Set 8: Relate Decimals and Fractions

Add. Show your work for problems 1-3.

$$\frac{3}{10} + \frac{9}{100}$$

$$\frac{31}{100} + \frac{4}{10}$$

$$\frac{64}{100} + \frac{8}{10}$$

Write each decimal as a fraction with a denominator of 100 for problems 4-6.

Write a decimal equivalent for each fraction or mixed number for problems 7-9.

$$\frac{7}{10} =$$

$$\frac{8}{100} = \dots$$

9
$$3\frac{14}{100} = ...$$

Set 9: Compare Decimals

Write <, >, or = in each circle to compare the decimals.

Set 10: Fraction Multiplication

Complete the multiplication equation represented by each model.

$$\times \frac{1}{2} = \dots$$

$$\times \frac{2}{3} =$$

$$\times \frac{3}{8} = \dots$$

Center Activity 4.27 ★★

Find Equivalent Fractions

What You Need

- number cube (1–6)
- 12 game markers in one color for Partner A
- 12 game markers in a different color for Partner B
- Game Board

What You Do

- Take turns. Roll the number cube. Look at the table. Find the fraction next to that toss.
- Cover that fraction with your game marker on the Game Board. If that fraction is already taken, your turn ends.
- **3.** Then cover all the fractions on the **Game Board** that are equivalent to your fraction.
- Repeat until all the fractions are covered.
 The player with the most markers on the Game Board wins.
- 5. Play again.

Toss	Fraction	
1	1/2	
2	<u>3</u>	
3	1/3	
4	1/4	
5	2/3	
6	Your turn ends.	

Roll the number cube. Ask your partner to name an equivalent fraction for that toss.

Center Activity 4.27 ★★ Game Board

Find Equivalent Fractions

** * * *	e W # F 00	₩ o 膏 * * ♥	* 0 * 27 6 6
†	<u>3</u>	4 12	1 3
₩ 4 6 0 ×	<u>6</u> 8	1 2	5 10
* 2 * 8	<u>2</u> 3	<u>8</u> 12	2 4 8 9 9
如0食中分寸	** > ~ ~	0 夏 🌣 艾 💆 💌	* * * VVVV Wod

I can start with any fraction and multiply or divide the numerator and denominator by the same number to get an equivalent fraction.

$$\frac{1\times5}{2\times5} = \frac{5}{10}$$

Check Understanding

Add.

$$2\frac{7}{8} + 3\frac{5}{8} =$$

Add and Subtract Mixed Numbers

What You Need

Recording Sheet

What You Do

- 1. Take turns. Choose a problem on the **Recording Sheet.**
- 2. Choose a method to solve the problem.
- **3.** Your partner uses a different method to check the answer.
- Continue until all the problems on the Recording Sheet have been solved.

Sometimes I use models to add or subtract mixed numbers. Sometimes I use equations.

Write two mixed numbers that have a sum of $4\frac{9}{10}$. Exchange with your partner to check the sum.

Add and Subtract Mixed Numbers

#8

$$8\frac{11}{12} - 7\frac{5}{12} =$$

$$2\frac{3}{5} + 3\frac{4}{5} =$$

$$4\frac{1}{6} + 8\frac{5}{6} =$$

$$3\frac{1}{4} - 1\frac{3}{4} =$$

Linda makes fruit punch with $2\frac{3}{8}$ cups of orange juice and $1\frac{2}{8}$ cups of grapefruit juice. How many cups of juice does she use altogether?

____cups

Benito walks $1\frac{2}{3}$ miles on a hiking trail. The trail is $3\frac{1}{3}$ miles long. How many more miles does Benito need to walk to reach the end of the trail?

_____miles